Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(5): 171, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592558

RESUMO

Cyantraniliprole (CY), an anthranilic diamide insecticide widely used in grape farming for controlling various sucking pests, poses ecological concerns, particularly when applied as soil drenching due to the formation of more toxic and persistent metabolites. This study established the dissipation and degradation mechanisms of CY in grape rhizosphere soil using high-resolution Orbitrap-LC/MS analysis. The persistence of CY residues beyond 60 days was observed, with dissipation following biphasic first + first-order kinetics and a half-life of 15 to 21 days. The degradation mechanism of CY in the soil was elucidated, with identified metabolites such as IN-J9Z38, IN-JCZ38, IN-N7B69, and IN-QKV54. Notably, CY was found to predominantly convert to the highly persistent metabolite IN-J9Z38, raising environmental concerns. The impact of CY residues on soil enzyme activity was investigated, revealing a negative effect on dehydrogenase, alkaline phosphatase, and acid phosphatase activity, indicating significant implications for phosphorous mineralization and soil health. Furthermore, bacterial isolates were obtained from CY-enriched soil, with five isolates (CY3, CY4, CY9, CY11, and CY20) demonstrating substantial degradation potential, ranging from 66 to 92% of CY residues. These results indicate that the identified bacteria hold potential for commercial use in addressing pesticide residue contamination in soil through bioremediation techniques.


Assuntos
Pirazóis , Solo , ortoaminobenzoatos , Biodegradação Ambiental , Bactérias/genética
2.
Curr Microbiol ; 81(5): 116, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489076

RESUMO

Grapevine is one of the economically most important fruit crops cultivated worldwide. Grape production is significantly affected by biotic constraints leading to heavy crop losses. Changing climatic conditions leading to widespread occurrence of different foliar diseases in grapevine. Chemical products are used for managing these diseases through preventive and curative application in the vineyard. High disease pressure and indiscriminate use of chemicals leading to residue in the final harvest and resistance development in phytopathogens. To mitigate these challenges, the adoption of potential biocontrol control agents is necessary. Moreover, multifaceted benefits of endophytes made them eco-friendly, and environmentally safe approach. The genetic composition, physiological conditions, and ecology of their host plant have an impact on their dispersion patterns and population diversity. Worldwide, a total of more than 164 fungal endophytes (FEs) have been characterized originating from different tissues, varieties, crop growth stages, and geographical regions of grapevine. These diverse FEs have been used extensively for management of different phytopathogens globally. The FEs produce secondary metabolites, lytic enzymes, and organic compounds which are known to possess antimicrobial and antifungal properties. The aim of this review was to understand diversity, distribution, host-pathogen-endophyte interaction, role of endophytes in disease management and for enhanced, and quality production.


Assuntos
Antifúngicos , Endófitos , Endófitos/genética , Antifúngicos/metabolismo , Plantas
3.
Environ Sci Pollut Res Int ; 31(3): 3763-3774, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091217

RESUMO

Imidacloprid (IM) is a systemic insecticide persistent in the environment and possesses a negative impact on the non-targeted ecosystem. The objective of the present study was to evaluate the dissipation and degradation mechanism of IM residues in grape rhizosphere soil and to investigate its residual effect on soil enzyme activity at different IM spiking levels. The half-life of IM residue in soil was 27, 36, and 43.5 days at a spiking level of 1, 10, and 50 mg kg-1, respectively following a bi-phasic first + first-order dissipation kinetics. UHPLC-Orbitrap™-MS analysis by targeted metabolomics approach revealed that IM metabolites such as IM-amine analogue, guanidine (reduction), 5-hydroxy IM (hydroxylation), IM-Urea (oxidation), reduced NO analogue of IM (oxidation), and olefin of guanidine IM (dehydrogenation) were identified and proposed the degradation mechanism in grape rhizosphere soil. Toxicity of IM residues on five extracellular enzymes, viz., dehydrogenase, acid phosphatase, alkaline phosphatase, ß-glucosidase, and urease revealed that activity of dehydrogenase, acid phosphatase, and alkaline phosphatase remained unaffected at 60th day of sampling. The ß-glucosidase and urease were negatively affected throughout the incubation period indicating the influence of IM residues on carbon and nitrogen mineralization in soil. Thus, long-term exposure of IM to grape rhizosphere through soil drenching could affect soil enzyme activity which has a negative effect on the soil nutrient cycle and soil microbiome.


Assuntos
Celulases , Neonicotinoides , Nitrocompostos , Poluentes do Solo , Vitis , Rizosfera , Ecossistema , Fosfatase Alcalina/metabolismo , Vitis/metabolismo , Solo/química , Urease , Cromatografia Líquida de Alta Pressão , Fosfatase Ácida , Oxirredutases/metabolismo , Guanidinas , Microbiologia do Solo , Poluentes do Solo/análise
4.
3 Biotech ; 13(7): 258, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37405269

RESUMO

In the present study, 51 fungal endophytes (FEs) were isolated, purified and identified from the healthy leaf segments of ten grapevine varieties based on the spore and colony morphologies and ITS sequence information. The FEs belonged to the Ascomycota division comprising eight genera viz., Alternaria, Aspergillus, Bipolaris, Curvularia, Daldinia, Exserohilum, Fusarium and Nigrospora. The in vitro direct confrontation assay against Colletotrichum gloeosporioides revealed that six isolates viz., VR8 (70%), SB2 (83.15%), CS2 (88.42%), MN3 (88.42%), MS5 (78.94%) and MS15 (78.94%) inhibited the mycelial growth of test pathogen. The remaining 45 fungal isolates showed 20-59.9% growth inhibition of C. gloeosporioides. Indirect confrontation assay manifested that the isolates MN1 and MN4a showed 79.09% and 78.18% growth inhibition of C. gloeosporioides followed by MM4 (73.63%) and S5 (71.81%) isolates. Isolate S5 and MM4 were found to produce azulene and 1,3-Cyclopentanedione, 4,4-dimethyl as antimicrobial volatile organic compounds, respectively. The 38 FEs showed PCR amplification using internal transcribed spacer universal primers. The BLAST search revealed highest similarity with the existing sequences in the database. The phylogenetic analysis revealed the occurrence of seven distinct clusters each corresponding to single genus. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03675-z.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA